1

Mark schemes

Q1.

(a) % uncertainty = (2 × 0.005 / 2.14) × 100 = 0.467%

2 sf or more

(b) Moles = $25.0 \times 10^{-3} \times 2.00$

= 0.0500 mol

Answer must be to 3 sf

(c) M1: $n(NaOH used in titration) = 0.0900 \times 0.02038 = 0.0018342$ (mol)

 $n(HCl in excess in 25cm^3) = 0.0018342 (mol)$

M1: Moles NaOH

M2: $n(HCl in excess in 250cm^3) = 0.0018342 \times 10 = 0.018342 (mol)$

 $M2: M1 \times 10$

M3: n(HCI that reacted) = 0.0500 - 0.018342 = 0.031658 (mol)

M3: (b) - M2

M4: n(MgO in 6 tablets using equation stoichiometry) = 0.031658/2

= 0.015829 (mol)

M4: M3 / 2

M5: Mass of MgO in 6 tablets = $0.015829 \times 40.3 = 0.6379 g$

 $M5: M4 \times 40.3$

M6: % by Mass of MgO = $(0.6379 / 2.14) \times 100 = 29.8 \%$

M6: (M5 / 2.14) ×100

[8]

Q2.

(a) M1 amount of Mg =
$$\frac{0.400}{24.3}$$
 = 0.016(5) (mol)

M2 amount of HCl = 1.50
$$\times \frac{20.0}{1000}$$
 = 0.03(00) (mol)

M3 justification that HCl is the limiting reagent (e.g. 0.0165 mol of Mg requires 0.0330 mol of HCl or only 0.0150 mol of Mg reacts with 0.030 mol of HCl or mols of HCl is less than double the moles of Mg or mols of Mg is more than half the moles of HCl)

M4 amount of H₂ formed = 0.0150 (or
$$\frac{M2}{2}$$
)

M5 converting T to 288, P to 101000

M6
$$V = \frac{M4 \times 8.31 \times 288}{101000}$$

M7
$$V = 3.55 \times 10^{-4} \text{ (m}^3\text{)}$$

M7 to at least 2 sf (3.554376... x 10-4)

3.6 x 10⁻⁴ to 2sf

M2 Penalise 0.015 mol shown as amount of HCl but ignore 0.015 in working out of limiting reagent Allow ECF at each stage, but note:

- M3 should be based on their values for M1/2
- M4 should be based on their values of M1/2 independent of M3
- Note that answer based on 0.0165 mol Mg as limiting reagent gives 3.79- 3.91×10^{-4} m³ which scores M5,6,7 and possibly M3,4

If candidates use 1 mol has volume of 24 dm³ rather than use ideal gas equation - cannot score M5/6/7

(b) **M1** $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$

M1 Allow multiples/fractions

M2 250 (cm³)

ECF from M1 to M2 (i.e. 50 x mol O2 in equation)

2

1

1

Q3.

(a) (To make sure that) as much as possible/maximum amount (of solid) dissolves

OR

(To ensure that) the solution/it is saturated

Do not accept reacted

Ignore references to right/correct concentration

(b) otherwise, the titre would be larger

OR

would need a larger volume of acid/HCI

OR

because undissolved strontium hydroxide will react (with the acid/HCI).

Allow (solid) could block pipette

Ignore references to changes in concentration and

рΗ

(c) To prevent reaction with carbon dioxide (in the air)

Allow so flask can inverted/shaken (to ensure homogeneous mixture)

OR

To prevent evaporation (of water/from solution)

Ignore contamination

(d) Answer C

(e) M1 Sr(OH)₂ + 2 HCl \rightarrow SrCl₂ + 2 H₂O

M1 Equation

M2 32.43 (cm³)

M2 Allow 32.425

M3 n HCl in mean titre = $3.24(3) \times 10^{-3}$ mol

M3 Allow 0.1 x M2 ÷ 1000

M4 n Sr(OH)₂ in 25 cm³ = 1.62×10^{-3} mol

M4 Allow M3 ÷ 2

M5 n Sr(OH)₂ in 100 cm³ of solution = 6.48×10^{-3} mol

 $M5 Allow M4 \times 4$

M6 mass = $(6.48 \times 10^{-3} \text{ mol x } 121.6) = 0.788 \text{ (g per } 100 \text{ cm}^3 \text{ solution)}$

 $M6 \ Allow = M5 \times 121.6$

M6 Allow 0.79

Allow M5 and M6 in either order

)

Q4.

(a) **M1** mol P = $0.0145 + (2 \times 0.0115) = 0.0375$

M2 [P] =
$$\frac{M1}{0.025}$$
 = 1.50 mol dm⁻³

ECF from incorrect M1

2

(b)

M1
$$K_c = \frac{[R][S]^3}{[P]^2[Q]}$$

M1 Must be square brackets in expression

M2
$$K_c = \frac{\left(\frac{0.0115}{0.045}\right)\left(\frac{0.0345}{0.045}\right)^3}{\left(\frac{0.0145}{0.045}\right)^2\left(\frac{0.0275}{0.045}\right)}$$
 or $=\frac{(0.256)(0.767)^3}{(0.322)^2(0.611)}$

M2 Inserts values and divides by volume in dm3

M3 = 1.81 to 1.82

M3 Evaluates expression If no use of volume lose M2 but can score M3 for 0.0817

M4 units mol dm⁻³

M4 Allow consequential to their expression

4

(c) M1 equilibrium shifts to side with most moles

M2 to oppose decrease in concentration of all reactants and products / dilution of everything

Allow

M2 oppose the decrease in concentration of S

OR

M1 K_c is expressed as a function of concentrations and concentration equals amount over volume.

 $K_c = RS^3/P^2Q \times 1/V$ (where R,S etc are amounts) So, if V increases R and S must increase relative to P and Q to keep K_c constant

M2 If Volume increases the amount of **R** and **S** must increase in order to keep K_c constant.

[8]

Q5.

M1
$$\frac{2.62 \times 10^{-8}}{6.56 \times 10^{-4}}$$
 = 4 or $\frac{6.56 \times 10^{-4}}{2.62 \times 10^{-8}}$ = 0.25

M2 Hence 4CO₂ + 4H₂O

M3 So 4C and 8H in L

M4 Hence 2O so C₄H₈O₂

C₃H₄O₃ scores 1 if no other mark scored

Alternative method

M1

 $nH in L = 5.24 \times 10^{-3}$

Hence mass $H = 5.24 \times 10^{-3} g$

M2

 $n C in L = 2.62 \times 10^{-3}$

Hence mass $C = 2.62 \times 10^{-3} \times 12$

 $= 3.144 \times 10^{-2} g$

М3

Mass $L = 6.56 \times 10^{-4} \times 88$

= 0.057728 g

Mass O = $0.057728 - (5.24 \times 10^{-3} + 3.144 \times 10^{-2})$

= 0.021048 g

М4

nO = 0.021048 / 16

= 1.3155 × 10⁻³

EF

C H O 2.62 × 10⁻³ 5.24 × 10⁻³ 1.3155 × 10⁻³ 2 4 1

 $MF = (88/44) \times C_2H_4O$

 $= C_4H_8O_2$

C₃H₄O₃ scores 1 if no other mark scored

Q6.

(a) **M1** (giant) <u>lattice</u> of (Mg²⁺) cations / (giant) <u>lattice</u> of (Mg) atoms *Incorrect structure type loses M1*

M2 (Electrostatic) attractions between cations / Mg²⁺ ions / nuclei **and** <u>delocalised</u> electrons

2

(b) M1 Trend: increases

M2 Reason: the number of electron energy levels increases

Allow: the number of electron shells increases

Ignore increase in shielding

2

(c) $Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$ State symbols essential

Bright/white flame/light

White/grey ash/powder (allow smoke)

Do not allow ppt

Ignore black solid

Ignore fumes.

3

(d) **M1** BaSO₄

M2 X-rays (of internal organs) / barium meal

2

(e) M1 Abundance of 87 Sr = X

and Abundance of 86 Sr = 1 - 0.83 - X

$$= 0.17 - X$$

Allow M1 for

Abundance of 87 Sr = X and Abundance of 86 Sr = Y **if** also states that X + Y = 17

M2 87.73 =
$$(88 \times 0.83) + (87 \times X) + (86 \times (0.17 - X))$$

87.73 = $(88 \times 0.83) + (87 \times X) + (86 \times Y)$

$$87.73 = 73.04 + 87X + 14.62 - 86X$$

$$87.73 = 87.66 + X$$

M3
87
Sr = 0.07 = 7 %

(f) **M1** Amount of HCl added = $0.200 \times 0.040 = 0.00800$ mol

M2 Amount of NaOH = $0.100 \times 0.02925 = 0.002925$ mol

(Amount of HCI = 0.002925 mol)

M3 Amount of HCl reacted with $Mg(OH)_2 = 0.00800 - 0.002925 = 0.005075$ mol

$$M3 = M1 - M2$$

M4 Amount of Mg(OH)₂ =
$$0.005075 \div 2 = 0.0025375$$
 mol $M4 = M3 \div 2$

M5 Mass of Mg(OH)₂ =
$$58.3 \times 0.0025375 = 0.148 \text{ g}$$

 $M5 = M4 \times 58.3$

M6 % by mass =
$$\frac{0.148}{0.200} \times 100 = 74.0 \%$$

 $M6 = \frac{M5}{0.200} \times 100$

Do not allow M6 if >100%

0

[19]

Q7.

(a) ANY THREE

Ignore apparatus changes

Record all masses (accurately to 2 decimal places)

Weigh by difference / wash the solid from weighing container into the beaker / add solid directly to volumetric flask (via a funnel) and dissolve in approximately 100 cm³ of distilled water.

Wash the beaker into the flask after the solution is transferred to the volumetric flask / wash the stirring rod into the flask after use / wash beaker and transfer washings to the volumetric flask.

(Use a dropper when adding close to the graduation mark to) ensure the <u>bottom of the meniscus</u> is on the graduation mark

Mix thoroughly the final solution in the volumetric flask / invert the flask several times (after making the solution up to the graduation mark).

(b)
$$\frac{0.20}{250} \times 100 = 0.080 \%$$

[4]

3

Q8.

M1
$$V = 225 \times 10^{-6} \ m^3$$
; $T = 723 \ K$

M1 converts units of V and T

M2

$$n = \frac{pV}{RT} = \frac{101\ 000 \times 225 \times 10^{-6}}{8.31 \times 723} = 3.78 \times 10^{-3} \text{ mol}$$

M2 calculates the amount, in moles, of gas produced

M3

$$n = M2 \times \frac{2}{5} = 1.51 \times 10^{-3} \text{ mol}$$

M3 calculates the amount, in moles, of M(NO₃)₂

$$n = (M2 \times \frac{2}{5})$$

M4

$$Mr = \frac{\text{mass}}{\text{mol}} = \frac{0.320}{(M3)} = 211.9$$

M4 calculation of Mr (allow 211.5 to 212)

M5

$$Ar(M) = 211.9 - 124.0 = 87.9$$
, so

M is Sr

M5 determination of Metal, M using M4 Consequential to M_r value on answer line: must be a Group 2 metal

3

1

1

3

Q9.

0.100 × 250 × 171.3

- (a) 1000 = 4.28 g*Allow 4.3 g*
- (b) M1 Transfers the solution to a volumetric/graduated flask
 - M2 Add <u>washings</u> using <u>distilled</u> water and make up to the graduation mark/250 cm³
 - M3 Invert many times / shake to mix
- (c) So that the titration is done with known concentration of Ba(OH)₂

 Allow so that water does not dilute the solution

 Allow remove water/prevent contamination
- (d) Drops of acid could fall into the burette (so no longer know how much has been added from burette)

OR

Decreases titre

Ignore changes the titre

Do not accept increases titre

(e) **M1** n Ba(OH)₂ in 25 cm³ = $\frac{0.952}{171.3 \text{ x} 10}$ = 5.56 x 10⁻⁴ mol

M2 n HCl in 24.5 cm³ = **2** x 5.56 x 10^{-4} = 0.00111 mol $M2 = M1 \times 2$

M3 Concentration of HCI = $\frac{M2 \times 1000}{24.50} = 0.045 \text{ mol dm}^{-3}$ $M3 = \frac{M2 \times 1000}{24.50}$

(f) $\frac{0.15}{24.50} + \frac{0.05}{25.00} \times 100\% = 0.8(1)\%$

[10]

Q10.

(a) M1 n(propanone) =
$$\frac{0.146}{58}$$
 (= 2.52 × 10⁻³)

M2 Conversion of T and P (T = 368K and P = 103000Pa)

M3 V =
$$\frac{\text{nRT}}{P}$$
 rearranged for V as subject (in algebraic or numbers)

$$V = \frac{\text{M1} \times 8.31 \times 368}{103000}$$
 scores M2 and M3

M4 their evaluated M3 × 1 × 10^6 = 75 cm³ Allow 74-75

(b) M1 V =
$$\frac{348}{368}$$
 × M4 = 71 cm³

Marked with (a)

Using alternate answer

M1 V = $\frac{348}{368}$ × 89 = 84 cm³

M2 Decrease = M4 - M1 =
$$4 \text{ cm}^3$$

 $M2 89 - 84 = 5 \text{ cm}^3$

Allow answer for M1 calculated as 70.8 cm^3 after substitution of values into pV = nRT. Could then lead to a difference of 18.2 cm^3 if compared to the alternate value for M4 of 89 cm^3

(c) M1 % uncertainty =
$$\frac{0.001}{0.146} \times 100 = 0.685\%$$

Marked with (a)

M2 Vol uncertainty =
$$\frac{M1}{100}$$
 × M4 = 0.5 cm³
Allow 0.6 cm³ if 89 cm³ used

(d) M1 Vol CO₂ formed = $3 \times 600 = 1800 \text{ cm}^3$ If PV = nRT method used

M1 $n(CO_2) = 0.0651$

M2 Total Vol left = $1800 + 400 = 2200 \text{ cm}^3$

[10]

2

2

1

1

Q11.

(a) M1 measure the mass of the weighing boat (or similar) and solid

M2 Add the solid to a beaker (or other suitable container) and then reweigh the weighing boat (and subtract to find the mass of solid added.)

OR

- M1 Place weighing boat on a balance and zero the balance
- **M2** Add the solid to a beaker (or other suitable container), wash out weighing boat and transfer washing to the beaker.

M1 place (an empty) beaker on balance and zero M2 add the solid to the beaker and record the mass OR

M1 place (an empty) beaker on balance and measure its mass M2 add the solid to the beaker and subtract mass of empty beaker from the total mass

(b) **M1** M_r citric acid = 192.0

M2 Amount of citric acid = Mass / M_r = 0.834 / 192 = 0.0043438 (mol)

M2 conseq on M1

M3 Concentration = moles / volume = 0.0043438 / 0.5 = 0.00869 (mol dm⁻³)

M3 conseq on M2

Alternative Method

M1 Concentration $(g/dm^3) = 0.834 / 0.50 = 1.668$ M2 M_r citric acid = 192.0 M3 Concentration $(mol/dm^3) = M1/M2 = 0.00869$ (c) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

Level 3 Three stages are covered and the explanation of each stage is generally correct and virtually complete Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.	5-6 marks	
Level 2 Three stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete	3-4 marks	
Answer shows some attempt at structure. Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. Some minor errors in use of technical terms.		
Level 1 Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.	1-2 marks	
Answer includes isolated statements but these are not presented in a logical order or show some confusion. Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms.		
Level 0 Insufficient correct chemistry to gain a mark.	0 marks	

Use best three of these four stages

Stage 1

- a. Problem using a measuring cylinder
- b. Explanation large uncertainty / not accurate enough
- c. Improvement use a (volumetric) pipette (Not dropping pipette)

Stage 2

- a. Problem too much indicator
- b. Explanation may react and affect the endpoint reading
- c. Improvement use a smaller volume (2-6 drops)

Stage 3

- a. Problem rinsing the burette with distilled or deionised water
- b. Explanation will slightly dilute the alkali solution
- c. Improvement rinse the burette with alkali solution

Stage 4

- a. Problem adding alkali solution until the indicator "just" changes colour
- b. Explanation acid may not have fully reacted (as mixture not swirled)
- c. Improvement add alkali solution until a permanent colour change is seen.

(d) Calculates the titres for each of 1,2,3 as

1	2	3
22.95	23.10	22.90

Averages concordant titres: $(22.95 + 22.90) \div 2 = 22.93 \text{ cm}^3$ *Allow* $22.9(25) \text{ cm}^3$

(e) $(0.15 / 22.95) \times 100 = 0.65\%$ 0.15 / (Their Run 1) × 100

[14]

1

1

1

1

Q12.

(a) **M1** amount of TNT =
$$\frac{1000}{227.0}$$
 (= 4.41 mol)

M2 amount of gases formed = $10 \times M1$ (= 44.1 mol)

M3
$$V = \frac{nRT}{P}$$

M4 V = converting T to 1523 (K) (or 273 + 1250)

M5
$$V = \frac{M2 \times 8.31 \times 1523}{101000} = 5.52 \text{ (m}^3\text{)} \text{ range } 5.5(1) \text{ tp } 5.53 \text{ (m}^3\text{)}$$

Final answer should be at least 2sf

Correct final answer scores 5 marks

Allow ECF from **M1** to **M2**, **M2** to **M5**, **M4** to **M5** and **M3** to **M5**

 $0.552 (m^3)$ for using 4.41 mol in **M5** scores 4 marks (loses **M2**)

4.54 (m³) for using 1250 K scores 4 marks (loses **M4**)

3.54 (m³) for using (1250 – 273) K scores 4 marks (loses **M4**)

0.18 (m³) for inverted expression scores 4 marks (loses **M3** or **M5**)

M3 can score from a substituted expression

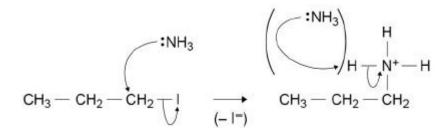
(b) 1200 (cm³)
$$200 \times \frac{3n}{2} \text{ where } n = 4 \quad 200 \times \frac{12}{2}$$

(c)
$$\frac{3n+1}{2}$$

$$1.5n + 0.5$$

allow other correct expressions (e.g. $n + \frac{(n+1)}{2}$)

[7]


1

1

1

Q13.

(a) M1 nucleophilic substitution

M2 attack by NH₃: arrow from lone pair on N of NH₃ towards C of C-I bond

M3 breaking of C-I bond: arrow from C-I bond to I

M4 structure of intermediate

M5 loss of H⁺: arrow from N-H bond to N

Penalise **M3** for formal charge on C and / or I of C-I or incorrect partial charges on C-I; ignore other partial charges on uncharged atoms

M4 is independent

For **M5** there is no need to show attack by a second NH₃ molecule, but if it is shown, it must be correct (but, if the NH₃ is charged and has been penalised in **M2** (or **M3** for SN1), then do not penalise the same error again in **M5**); penalise removal of H⁺ by attack with I⁻

For SN2:

penalise **M2** for any additional arrow or charge on NH₃:

penalise **M3** for any additional arrow(s) to / from the I to / from anything else

If SN1 mechanism given (loss of I first followed by attack by NH₃):

M2 curly arrow from C-I bond to the I
M3 curly arrow from lone pair on N of NH₃ to
positive C atom of correct carbocation
penalise M2 for any additional arrow(s) to / from the
I to / from anything else
penalise M3 for any additional arrow or charge on
NH₃

1

(b) **M1** amount of 1-iodopropane = 169.9 (= 0.0515 mol)

Allow ECF from M1 to M2 based on an attempt to find the amount of 1-iodopropane in moles using the M_r

M2 number of molecules = $M1 \times 6.022 \times 10^{23}$

$$= 3.1(0) - 3.13(144) \times 10^{22}$$

M2 Answer should be standard form (and be at least 2sf)

2.3

(c) **M1** amount of propylamine = 59.0(= 0.0390 mol)

AND amount of 1-iodopropane = $\frac{10.3}{169.9}$ (= 0.0606 mol) Allow ECF from M1 to M2

M2 % yield = $\frac{0.0390}{0.0606} \times 100 = 63.9 \text{ to } 64(.4 \%)$

Alternative method

M1 mass of 1-iodopropane = $\frac{10.3 \times 59.0}{169.9}$ (= 3.58 g)

M2 % yield = $\frac{2.3}{M1}$ x 100 = 63.9 to 64(.4 %)

Correct answer scores 2 marks

[9]

1

1

Q14.

(a) **M1**
$$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$$
 ignore state symbols

M2 n (MnO₄⁻) =
$$\frac{0.020 \times 35.85}{1000} = \frac{7.17 \times 10^{-4}}{1000}$$
 (mol)

M3 n (H₂O₂) = 7.17 × 10⁻⁴ × 5/2 = 1.793 × 10⁻³ (mol)

$$M3 = M2 \times 5/2$$

M4 conc (H₂O₂ in sample) =
$$\frac{1.793 \times 10^{-3}}{25 \times 10^{-3}}$$
 = 0.0717 (mol dm⁻³)
M4 = $\frac{M3 \times 100}{25}$

M5 original conc of H₂O₂ (= 0.0717 ×
$$\underline{20}$$
 = 1.43 (mol dm⁻³)

$$M5 = \frac{\underline{M4 \times 100}}{5}$$
allow 1.43-1.44

paper

$$M3 = 7.17 \times 10^{-4} \times 4/3 = 9.56 \times 10^{-4}$$

 $M4 = 0.0382 \text{ (mol dm}^{-3}\text{)}$
 $M5 = 0.765 \text{ (mol dm}^{-3}\text{)}$

(b) KMnO₄ is self-indicating

O

KMnO₄ is no longer decolourised at end point

or

(solution) changes (from colourless) to (pale) pink/purple at end point

(c) -1

1

1

1

1

(d) **M1** $2H_2O_2 \rightarrow 2H_2O + O_2$ allow multiples ignore state symbols

M2 $V = 185 \times 10^{-6} \text{ (m}^3) \text{ and } P = 100 \ 000 \text{(Pa)}$ unit conversions

M3 $n = \frac{PV}{RT} = \frac{100\,000 \times 185 \times 10^{-6}}{8.31 \times 298}$ rearrangement of ideal gas equation

M4 $n(O_2) = 7.47 \times 10^{-3} \text{ (mol)}$ calculation

M5 $n(H_2O_2) = (7.47 \times 10^{-3} \times 2) = 0.0149 \text{ mol}$ allow M4 × 2 to 2 sig fig or more

if incorrect rearrangement in M3 can score M1, M2 and M5

[12]

Q15.

(a) Smaller titre will increase (%) uncertainty / error

amount Br₂ = $0.025 \times \frac{30}{1000} = 7.5 \times 10^{-4} \text{ mol}$ Or 0.00075

(b) Ratio Y:bromine

M11:5

Alternative calc using supplied answer

M1

1

1

M2 n Y in 25 cm³ oil =
$$\frac{7.5 \times 10^{-4}}{5}$$
 = 1.5 × 10⁻⁴
n Y in 25 cm³ oil = $\frac{6.25 \times 10^{-4}}{5}$ = 1.25 × 10⁻⁴

If no ratio must state n Y for M2

M2

М3

M4 Mass = M3 × 880 = (1.32 g)

$$Mass = 1.25 \times 10^{-3} \times 880 = (1.1 g)$$

M4

M5 Total mass oil needed = M4 ×
$$\frac{100}{85}$$
 = 1.55 g

Total mass oil needed = 1.1 × $\frac{100}{85}$ = 1.29g

M5

If wrong ratio used treat as AE and mark ECF

(c) Extra step: Weigh the bottle after oil transfer (and record the mass)

OR Rinse the bottle with solvent after transfer and
add the washings (to the volumetric flask)

M1

Justification: Not all of the oil is transferred Or so that the mass of oil left in the bottle is accounted for Or find the exact mass of oil used

To ensure all the oil is transferred M2 is dependent on M1

M2

(d) To ensure the solution is homogeneous

Allow evenly mixed/ distributed OWTTE

Uniform solution

1

(e) $M_r = 345 - 1$

Must show workings in both M1 and M2

M1

$$\frac{M_r}{M1}$$
 (C₅H₁₀O) = 86
 $\frac{M1}{86}$ = 4 Hence C₂₀H₄₀O₄

M2

[12]